Fiscal Unit/Academic Org Administering College/Academic Group Co-adminstering College/Academic Group Semester Conversion Designation Proposed Program/Plan Name Type of Program/Plan Program/Plan Code Abbreviation Proposed Degree Title

ASC Administration - D4350 Arts and Sciences New Program/Plan Computational Science Minor

Undergraduate minor

Credit Hour Explanation

Program credit hour requirements		A) Number of credit hours in current program (Quarter credit hours)	B) Calculated result for 2/3rds of current (Semester credit hours)	C) Number of credit hours required for proposed program (Semester credit hours)	D) Change in credit hours
Total minimum credit hours required for completion of program				18	
Required credit hours offered by the unit	Minimum				
	Maximum				
Required credit hours offered outside of the unit	Minimum				
	Maximum				
Required prerequisite credit hours not included above	Minimum			10	
	Maximum			22	

Program Learning Goals

Note: these are required for all undergraduate degree programs and majors now, and will be required for all graduate and professional degree programs in 2012. Nonetheless, all programs are encouraged to complete these now.

Program Learning Goals

 The program goals are to provide the students with competencies related to the application of computer modeling to science and social science research and practice. This includes an understanding of the principles and practice of computer modeling,

Assessment

Assessment plan includes student learning goals, how those goals are evaluated, and how the information collected is used to improve student learning. An assessment plan is required for undergraduate majors and degrees. Graduate and professional degree programs are encouraged to complete this now, but will not be required to do so until 2012.

Is this a degree program (undergraduate, graduate, or professional) or major proposal? No

Program Specializations/Sub-Plans

If you do not specify a program specialization/sub-plan it will be assumed you are submitting this program for all program specializations/sub-plans.

Pre-Major

Does this Program have a Pre-Major? No

Attachments

minorprogramproposalarts_final.doc
 (Program Proposal. Owner: Hanlin,Deborah Kay)

• Minor Program Form -compscienceCA final.doc

(Other Supporting Documentation. Owner: Hanlin, Deborah Kay)

Comments

• Remove current attachments and upload revised ones. (by Vankeerbergen, Bernadette Chantal on 10/01/2013 02:37 PM)

Workflow Information

Status	User(s)	Date/Time	Step	
Submitted	Hanlin,Deborah Kay	06/12/2013 12:13 PM	Submitted for Approval	
Revision Requested	evision Requested Vankeerbergen,Bernadet te Chantal		Unit Approval	
Submitted	Hanlin,Deborah Kay	06/12/2013 03:55 PM	Submitted for Approval	
Approved	Vankeerbergen,Bernadet te Chantal	06/12/2013 04:21 PM	Unit Approval	
Approved	Heysel,Garett Robert	06/13/2013 11:48 PM	College Approval	
Revision Requested	Vankeerbergen,Bernadet te Chantal	06/27/2013 09:46 AM	ASCCAO Approval	
Submitted	Hanlin,Deborah Kay	06/27/2013 09:55 AM	Submitted for Approval	
Approved	Vankeerbergen,Bernadet te Chantal	06/27/2013 09:56 AM	Unit Approval	
Approved	Carlson,Wayne Earl	06/28/2013 08:50 AM	College Approval	
Revision Requested	Vankeerbergen,Bernadet te Chantal	08/30/2013 01:18 PM	ASCCAO Approval	
Submitted	Hanlin,Deborah Kay	09/13/2013 09:29 AM	Submitted for Approval	
Approved	Vankeerbergen,Bernadet te Chantal	09/13/2013 10:25 AM	Unit Approval	
Approved Heysel, Garett Robert		09/13/2013 07:54 PM	College Approval	
Revision Requested Vankeerbergen,Bern te Chantal		10/01/2013 02:38 PM	ASCCAO Approval	
Submitted	Hanlin,Deborah Kay	10/01/2013 02:45 PM	Submitted for Approval	
Approved	Vankeerbergen,Bernadet te Chantal	10/01/2013 02:46 PM	Unit Approval	
Approved	Heysel,Garett Robert	10/03/2013 11:06 AM	College Approval	
Pending Approval	Vankeerbergen,Bernadet te Chantal Nolen,Dawn Jenkins,Mary Ellen Bigler Hogle,Danielle Nicole	10/03/2013 11:06 AM	ASCCAO Approval	
	naniin,Deborah Kay			

Proposal for an Arts and Sciences Minor Program in Computational Science

Introduction

Computational science describes the application of computing, especially high performance computing, to the solution of scientific and technical problems. Computational scientists use computers to create mathematical models that help them simulate and understand the operation of natural and mechanical processes, as well as to visualize the operation and results of these models.

Computational science (i.e., science in-silico) has become a third way of advancing knowledge along with the traditional methods of theory and experimentation. In-silico simulations and modeling afford the opportunity to "see" the unattainable – phenomena that are too small (atoms and molecules), too large (galaxies and the universe), too fast (photosynthesis), too slow (geological processes), too complex (automobile engines), or too dangerous (toxic materials). In recent years, computational studies have produced enormous advances in almost all fields of scientific and engineering inquiry, including DNA sequencing, behavioral modeling, global climatic predictions, drug design, financial systems, and medical visualization.

A number of institutions both within and outside Ohio have initiated minor programs in computational science in recognition of its increasing importance in science and engineering research and applications. The proposed minor program focuses on providing the relevant expertise in the principles of modeling and simulation, computer science skills in programming, and related mathematics and analytics concepts. A similar minor program in engineering at OSU was approved last year and went into operation in the 2012-2013 academic year.

The basic requirements of this minor program are guided by a document associated with the Ralph Regula School of Computational Science, which was established as a "virtual school" by the Ohio Board of Regents in December 2005. RRSCS is a run from the Ohio Supercomputer Center and does not offer degrees of its own but serves to organize and coordinate statewide efforts to integrate computational science programs into the curricula at participating institutions, one of which is OSU. Computational science and engineering is an interdisciplinary field with expertise scattered among different departments and different institutions—though OSU offers expertise and coursework in all these areas. The intention of RRSCS is to sponsor shared, interinstitutional programs that take advantage of the existing expertise, make it widely available, and limit the duplication of effort and expense where possible. For completeness, and to answer any questions that might arise about this unusual aspect of this program, the full proposal for the just approved minor program is provided as Attachment B. One change in the previously approved minor is to make the "optimization" course an elective rather than a requirement. This keeps the total credit hours upon conversion to semesters within the desired range.

A faculty committee represented by several of the participating departments will oversee the minor program. Greg Kilcup from the Department of Physics has agreed to serve as the first chair of this committee. Two other committee members will be solicited from the other participating departments. It is anticipated that committee membership will rotate to involve participating faculty from all related departments over time. They will review proposed exceptions to the course requirements for students and also periodically review the program and recommend updates and amendments. The committee will also review proposals for research and internship experiences from the participating students to ensure that those experiences meet the intended practical experience in the use of computational modeling techniques.

Enrollment in the minor program is expected to be modest with approximately 10-15 students per year.

Overview of the Minor Curriculum

The skills underlying the minor program curriculum are based on the results of a National Science Foundation grant that created competencies in computational science for undergraduate students. An interdisciplinary team consisting of faculty from all of the related disciplines created the competencies as a part of the grant outcomes. That included a number of faculty from OSU. Subsequently, the competencies have been reviewed by an industry advisory committee and by a number of computational science experts at institutions nationwide. The competencies are available online at http://hpcuniversity.org/educators/undergradCompetencies/ and are also attached as Appendix A.

The proposed minor curriculum consists of five required courses and at least one elective. These are shown in Table 1. All students are required to take a year of calculus, which is part of the current requirements for the target major fields. Calculus could be taken concurrently with the introductory modeling and simulation course, but is a prerequisite for the other courses. The courses are described in the table of competencies shown in Appendix A.

Coursework Requirements

The Computational Science minor requires the completion of at least 18 credits of approved coursework, including a required course in each of five designated areas and one elective, as summarized in Table 1.

Required Courses

1) Simulation and Modeling: An introductory course on the use of models (continuous and discrete) and simulation in science and engineering. An introductory course of this nature is being added by Computer Science and Engineering as CSE 2021. The course is aimed at Arts and Sciences majors with no previous computer science experience. There are also several related courses in engineering that meet this requirement for students with more advanced skills.

2) Programming and Algorithms: A course on computer programming and the use of a programming language for problem solving is the second required course. There are two Computer Science and Engineering courses that currently meet this requirement.

3) **Numerical Methods**: An applied introduction to use of numerical methods in solving linear and nonlinear equations, interpolation, numerical solution of differential equations. There are several mathematics and engineering courses that meet this requirement.

4) Capstone Research/ Internship Experience: Each student must complete a guided research project or internship on a computational topic. The mechanism used to satisfy this requirement may differ across departments – e.g. computationally oriented senior design project or honors thesis, or a computationally oriented independent research study with a faculty member at Ohio State, or internship experience with an external agency or company that meets the goals of this requirement. Credit will be given through available independent studies or research course designations.

The faculty oversight committee will review proposals for the capstone research experience to ensure that they meet the intended purpose of this requirement.

5) Discipline-Specific Course: Any approved computationally oriented course from the student's major discipline. Currently there are related courses in biomedical informatics, chemistry, economics, geography, linguistics, mathematics, microbiology, physics, and psychology.

6) **Optional course**: Students then have the option of taking one of several courses as an elective. These include additional mathematics courses, courses in parallel programming, scientific visualization, or optimization. Other options may be considered in more advanced modeling and simulation, data management, or other related areas by petition.

	Торіс	Course	Credit Hours	Terms offered	Required/ Elective
Droroquisitos	Coloulus	MATH 1151.xx	5	Au, Sp	
Prerequisites	Calculus	MATH 1152.xx or Math 1172	5	Au, Sp	
		MATH 1157	3	Sp	Required
		CSE 2021	3	Sp	
	Simulation and Modeling (Choose one of these courses)	ISE 5100	3	Au, Sp	
		ME 5372	3	Au	
		MATSCEN 4321	3	Au	
	Programming and Algorithms	CSE 1222	3	Au, Sp	Required
Core Courses	(Choose one of these courses)	CSE 2221	4	Au, Sp, Su	
		AERO 3581	3	Au	
		CSE 5361	3	Au, Sp	
	Numerical Methods	ECE 5510	3	Au	Paguirad
	(Choose one of these courses)	MATH 3607	3	Sp	Required
		MATH 5401	3	Sp	1
		MECHENG 2850	3	Au, Sp	
		CIVILEN 4000.01	2	Au, Sp	
	Capstone Research/Internship Experience (minimum 3 credits)	Any individualized research courses. I.E.: MATH 4998; CHEM 4998 or other approved individualized research credits **	3-5	Au, Sp, May, Su, May + Su/ Au, Sp/Au, Sp	Required
		CSE 3521	3	Au, Sp	Required
	Discipline-specific	CSE 3341	3	Au, Sp	
		MICRBIO 5161H	3	N/A	
		BMI 5730	3	Sp	
Discipline Specific		CHEM 5440	3	Au	
Courses		MATH 5651	3	Sp	
		PHYS 6810	4	Sp	
	Computationally oriented Course	LING 5801	3	Au	
		LING 5802	3	Sp	
		ECON 4050	3	Au, Sp	
		ECON 5001	3	Au, Sp	
		GEOG 5221	3	Au	
		PSYCH 5608 or 5609 or 5618	3	Sp	
		EARTHSC 5642	3	Sp	
		MATH 2255	3	Su, Au, Wi, Sp	
	Differential Equation and Discrete	MATH 2415	3	Su, Au, Wi, Sp	Elective
		MATH 2568	3	Su, Au, Wi, Sp	
Elective: Choose at least	Parallel Programming	CSE 5441	3	Au	Elective
one course from the following (3 credits total	Scientific Visualization	CSE 5544	1-5	Su, Au, Wi, Sp	Elective
required)		CEG (CIVILEN) 4760	3	Sp	Elective
	Ontimization	ECE 5759	3	Au	
	Opumization	ISE 3200	3	Au, Sp	
		MATSCEN 4181	3	Au	
		Total minimum credit hours: 18			

** A proposal for the individual research project must be submitted in advance of the research experience, and then approved by the Faculty Oversight Committee for the minor program.

The Ohio State University College of Arts and Sciences

Computational Science Minor

Arts and Sciences Advising and Academic Services 100 Denney Hall 164 West 17th Avenue Columbus, OH 43210 http://ascadvising.osu.edu

The minor in computational science consists of a minimum of 18 credit hours of course work: A simulation and modeling course (Math 1157, CSE 2021, ISE 5100, ME 5372, or MATSCEN 4321), either CSE 1221 or 2221, a numerical methods course (CSE 5361, ECE 5510, MATH 3607, MATH 3401, AERO 3581, MATH 5401, or ME 2850), a capstone research or internship using an approved departmental research course designation, one discipline specific computational modeling course (CHEM 5440, MICROBIO 5161H, CSE 3521, CSE 3341, BMI 5730, MATH 5651, PHYS 6810, LING 5801, LING 5802, ECON 4050, ECON 5001, GEOG 5221, PSYCH 5608, PSYCH 5609, PSYCH 5618, OR EARTHSC 5642), and one elective (MATH 2255, MATH 2415, MATH 2568, CSE 5441, CSE 5544, CEG 4760, ECE5759, ISE 3200, or MATSCEN 4181). Of these courses, at least 12 credit hours **must** be at the 2000 level or above.

After the Arts and Sciences advisor has approved your Minor Program Form, you should file the form with your college or school counselor. For further information about the minor program, contact ASC advising.

Computational Science Minor Program Guidelines

The following guidelines govern this minor.

Required for graduation No

<u>Credit hours required</u> A minimum of 18. Of these, at least 12 credit hours **must** be at the 2000 level or above.

<u>Transfer credit hours allowed</u> No more than one half of the credit hours required on the minor.

Overlap with the GE Permitted up to 6 hours.

Overlap with the major Not allowed and

• The minor is interdisciplinary and is available for any major in Arts and Sciences.

• The same courses cannot count on the minor and on the major.

<u>Overlap between minors</u> Each minor completed must contain 12 unique hours.

Grades required

• Minimum C– for a course to be listed on the minor.

• Minimum 2.00 cumulative point-hour ratio required for the minor.

• Course work graded Pass/Non-Pass cannot count on the minor.

<u>Approval required</u> The minor program should be approved by an advisor in ASC Advising or your departmental advisor in ASC. Requests to include in the minor any courses not listed herein must be submitted to the coordinator of the minor program Greg Kilcup, Department of Physics, kilcup.1@osu.edu.

<u>Filing the minor program form</u> The minor program form must be filed at least by the time the graduation application is submitted to a college or school counselor. You should plan to file the form as soon as you have decided to pursue the minor.

<u>Changing the minor program</u> Once the minor program is filed in the college office, any changes must be approved by an ASC advisor or the coordinator of the program.

Appendix A

Computational Science Minor Program Competencies

Minor Program in Computational Science Competency/Topic Overview Area 1: Simulation and Modeling

Competency/Descriptors
Explain the role of modeling in science and engineering
Descriptors:
Discuss the importance of modeling to science and engineering
Discuss the history and need for modeling
Discuss the cost effectiveness of modeling
Discuss the time-effect of modeling (e.g. the ability to predict the weather)
Define the terms associated with modeling to science and engineering
List questions that would check/validate model results
Describe future trends and issues in science and engineering
Identify specific industry related examples of modeling in engineering (e.g., Battelle:
P&G. material science. manufacturing. bioscience. etc.)
Discuss application across various industries (e.g., economics, health, etc.)
Analyze modeling and simulation in computational science
Descriptors:
Identify different types of models and simulations
Describe a model in terms of iterative process linking physical and virtual worlds and
the science of prediction
Explain the use of models and simulation in hypothesis testing (e.g. scientific method)
Create a concentual model
Descriptors:
Illustrate a concentual modeling process through examples
Identify the key parameters of the model
Estimate model outcomes
Itilize modeling software and/or spreadsheets to implement model algebraic equations
(e.g. Vensim, Excel, MATLAB, Mathematica)
Construct a simple computer visualization of the model results (a.g. infactious disease
model traffic flow, etc.)
Validate the model with date
Validate the model with data
Discuss model quality and the sources of errors
Examine various mathematical representations of functions
Descriptors:
Describe linear functions
Define non-linear functions (e.g., polynomials, exponential, periodic, parameterized,
visualize functions utilizing software (e.g. Excel, Function flyer, etc.)
Determine appropriate functional form to fit the data
Demonstrate essential mathematical concepts related to modeling and simulation
Analyze issues in accuracy and precision
Descriptors:
Describe various types of numerical and experimental errors
Explain the concept of systematic errors
Explain the concept of data dependent errors
Illustrate calculation and measurement accuracy
Identify sources of errors in modeling and approaches to checking whether model results

are reasonable
Understand discrete and difference-based computer models
Descriptors:
Explain the transition of a continuous function to its discrete computer representation
Represent "rate of change" using finite differences
Cite examples of finite differences
Explain derivatives and how they relate to model implementation on a computer
Write pseudo-code for finite difference modeling
Demonstrate computational programming utilizing a higher level language or
modeling tool (e.g. Maple, MATLAB ^{1M} , Mathematica, other)
Descriptors:
Describe the system syntax (e.g., menus, toolbars, etc.)
Define elementary representations, functions, matrices – arrays, script files, etc.
Explain programming and scripting processes (e.g., relational operations, logical
operations, condition statements, loops, debugging programs, etc.)
Create tabular and visual outputs (e.g., 2-D and 3-D subplots)
Translate the conceptual models to run with this system and assess the model results
(e.g. traffic flow and/or "spread of infectious disease")
Illustrate other people's models utilizing the modeling program
Assess computational models
Descriptors:
Assess problems with algorithms and computer accuracy
Discuss techniques and standards for reviewing models
Verify and validate the model
Discuss the differences between the predicted outcomes of the model and the computed
outcomes and relevance to the problem
Discuss the suitability and limits of the model to address the problem for which the
model was designed
Build event-based models
Descriptors:
Describe event-based modeling (e.g. SilviOLINK Extend, AREINA)
Translate concentual models (a.g., traffic flow utilizing SIMIU INK TM)
Complete a team based real world model project
Complete a team-based, real-world model project
Identify a problem create mathematical model and translate to computational modeling
Organize and present project proposal
Document model development and implementation
Collaborate with team members to complete the project
Demonstrate technical communication
Demonstrate technical communication
Demonstrate technical writing skills in the comprehensive report
Demonstrate verbal communication skills in an oral presentation
Create and present visual representation of model and results
Address all components of a comprehensive technical report
Respond to peer review

Minor Program in Computational Science Competency/Topic Overview Area 2: Programming and Algorithms

Competency/Descriptors
Describe the fundamentals of problem solving
Descriptors:
Understand Top-Down thinking and program design
Discuss breaking up a problem into its component tasks
Understand how tasks acquire data
Describe how tasks should be ordered
Represent tasks in a flow-chart style format
Understand the difference between high-level languages (for example Mathematica,
Maple or MATLAB), medium level languages (for example FORTRAN or C) and low-
level languages (assembler) and when each should be used.
Understand and write Pseudo code
Descriptors:
List the basic programming elements of Pseudo code
Explain the logic behind an if/then/else statement
Understand the iterative behavior of loops
Describe the difference between several looping constructs
Write Deaudo code to solve basic problems
Understand how to represent data flow in and out of subprograms
Use subprograms in program design
Descriptors:
Descriptors.
Understand the logical distinction between functions and subroutines
Europein the control flow when a function is called
Explain the control flow when a function is called
Define duminy and actual arguments
Explain here function extract is used
Explain now function output is used
Understand now languages handle passed data into functions and subprograms,
especially one and two dimensional arrays.
Write code in a Programming language
Descriptors:
Understand the concept of syntax in a programming language
Describe the syntax of the programming language constructs
List the type of subprograms available in the language
Explain the concepts of argument pass-by-value and pass-by-reference
Understand what a compiler and linker do
Understand the difference between a compiled and interpreted language
Understand the difference between a typed and an un-typed language
Understand the difference between a source file and an executable file
Write and run basic programs in the language of choice
Understand how to de-bug code and how to "sanity check" code.
Understand the importance of user-interfaces: clear input instructions including physical
units if needed and clearly formatted and labeled output
Understand the numerical limits of various data types and the implications for numerical
accuracy of results.
Use different approaches to data I/O in a program

Descriptors:
Explain the advantages and disadvantages of file I/O
Describe the syntax for file I/O in your programming language
Compare binary and ASCII file I/O
Write code using file I/O and keyboard/monitor I/O
Understanding and use of fundamental programming Algorithms
Descriptors:
Explain an algorithm as an ordered series of solution steps
Describe an algorithm for a simple programming problem
Learn and use "classic" programming algorithms from a field of interest to the student.
If possible, these should be algorithms used in the student's discipline.
Describe what a software library is
Understand how library functions implement algorithms
Write code to implement your own version of "classic" algorithm
Compare with code using a library function
Understand data flow into library functions and implications of selecting any "tuning
parameters" or options that may be required.
Explain various approaches to Program Design
Descriptors:
Describe Functional decomposition (Top-down Problem Solving)
Be familiar with different programming styles (e.g. function, procedural, rule based)
Understand how to modularize code
Understand the benefits of code re-use
Explain the operation of a Boss-Worker design
Compare designs based on Global Variables vs. self-contained functions
Define Object-Oriented Programming (OOP)
Contrast OOP with functional decomposition
Explain the power of Inheritance in OOP
Understand how to document code
Understand how to write and when to use stubs and drivers.

Competency/Descriptors

Describe the solution methodology for first order linear differential and difference equations

Descriptors:

Analyze modeling problems with first order differential equations and present their solution methodology (e.g. liner, homogeneous, exact)

Analyze modeling problems with first order difference equations and present their solution methodology (e.g. homogeneous, non-homogeneous). Analyze long term behavior

Describe the solution methodology for systems of linear first order differential and difference equations

Descriptors:

Describe modeling problems with systems of first order differential equations and present their solution methodology (e.g., homogeneous with constant coefficients, variation of parameters)

Describe modeling problems with systems of first order difference equations and their solution methodology (e.g., homogeneous with constant coefficients)

Describe the solution methodology for higher order differential and difference equations

Descriptors:

Describe modeling problems with higher order differential equations analyze their solution methodology (e.g., homogeneous, non-homogeneous, undetermined coefficients, variation of parameters)

Describe modeling problems with higher order difference equations analyze their solution methodology (e.g., homogeneous, non-homogeneous). Analyze the long-term behavior.

Describe the solution methodology for differential equations using the Laplace Transforms

Descriptors:

Discuss the Laplace transformation of (e.g., continuous, discontinuous, delta and convolution) functions

Describe modeling problems with differential equations and present their solution methodology using Laplace transformations (use of CAS, Maple, Mathematica)

Describe the solution methodology for non-linear differential equations Descriptors:

Describe the concept of an equilibrium point

Model with non-linear differential equations and present the phase –portrait analysis Understand and demonstrate how chaos is generated in the solution process of nonlinear differential equations.

Describe the solution methodology for non-linear difference equations Descriptors: Describe the method of linearization Describe the concepts of Logistic and Henon Maps Model with non-linear difference equations and demonstrate understanding of fundamental concepts from Bifurcation theory (e.g., fixed, periodic points, chaos) Describe techniques for controlling chaos Understand concepts of numerical accuracy applied to each solution approach

Minor Program in Computational Science Competency/Topic Overview Area 4: Numerical Methods

Competency/Descriptors
Understand number representation and computer errors
Descriptors:
Understand the pros and cons of floating point and integer arithmetic
Describe various kinds of computing errors (e.g., round-off, chopping)
Describe absolute, relative error and percent error
Discuss error propagation
Describe loss of significance – methods to avoid loss of significance
Analyze methods for solving non-linear equations
Descriptors:
Discuss and contrast fixed point methods (e.g., bisection, secant, Newton's) for a single
equation
Describe a fixed point method for a system of equations (e.g., Newton's)
Describe techniques for solving systems of linear equations
Descriptors:
Describe the naïve Gauss elimination and the partial pivoting method
Understand the concepts of condition number and ill-conditioning problems
Discuss and contrast factorization methods (e.g., LU, OR, Cholesky, SVD)
Discuss and contrast iterative methods (e.g., Jacobi, Gauss Siedel)
Describe convergence and stopping criteria of iterative methods
Analyze techniques for computing eigenvalues—eigenvectors (Ontional)
Descriptors:
Describe and give examples of eigenvalue –eigenvector problems using specific applied
examples and their significance
Describe canonical forms of matrices
Describe and contrast direct methods for computing eigenvalues (e.g. power method
inverse nower method)
Describe and contrast transformation methods (e.g. OR algorithm)
Describe and contrast transformation methods (e.g., QK algorithm)
Descriptors:
Describe and contrast interpolation methods (e.g. Lagrange, Chebyshev, EFT)
Describe and contrast interpolation includes (e.g., Lagrange, Chebyshev, 111)
cubic)
Discuss approximation using the method of least squares (linear, vs. non linear)
Discuss approximation using the method of least squares (mean .vs. non-intear)
Describe numerical methods for Orumary Differential Equations
Describe and compare basic methods for IVDs (e.g. Euler Taylor Dungs Kutta)
Describe and compare basic methods for TVPs (e.g., Euler, Taylor, Kunge-Kutta)
Describe and compare predictor-corrector methods
Describe and compare multislep methods
Discuss and contrast numerical methods for BVPs (e.g., shooting method, finite
difference method)
Compare the accuracy, memory requirements, and precision of each of the approaches
Describe numerical methods for Partial Differential Equations
Descriptors:
Describe and compare numerical methods for parabolic PDEs (e.g., finite difference,
Crank-Nicolson)

Describe numerical methods for hyperbolic PDEs	
Describe numerical methods for elliptic PDEs (e.g. finite difference,	Gauss-
Seidel)	
Discuss the finite element method for solving PDEs	
Describe Monte Carlo Methods	
Describe applications of Monte Carlo models with examples	
Discuss algorithms for Monte Carlo methods	

Minor Program in Computational Science Competency/Topic Overview Area 5: Optimization

Describe and use Optimization techniques Descriptors:

Describe and contrast unconstrained optimization methods (e.g., Golden section search, Steepest descent, Newton's method, conjugate gradient, simulated annealing, genetic algorithms)

Describe and contrast constrained optimization methods (e.g., Lagrange

multiplier, quasi-Newton, penalty function method

Implement linear and non-linear programs

Analyze linear programming methods (e.g., simplex method) Describe non-linear programming methods (e.g., interior, exterior, mixed methods) Demonstrate ability to correctly use software systems (e.g., Matlab, IMSL, NAG) to solve practical optimization problems

Competency/Descriptors
Describe the fundamental concepts of parallel programming and related
architectures
Descriptors:
Describe the differences between distributed and shared memory architectures
Describe the difference between domain and functional decomposition in parallel
Describe a parallel programming approach to an introductory problem
Compare parallel, distributed, and grid computing concepts
Demonstrate parallel programming concepts using MPI
Descriptors:
Describe the MPI programming model
Create, compile, and run an MPI parallel program
Create MPI programs that utilize point-to-point communications
Create an MPI program that uses point-to-point blocking communications
Create an MPI program that uses point-to-point non-blocking communications
Create an MPI program that uses collective communications
Create an MPI programs that use parallel I/O
Create MPI programs that use derived data types
Create MPI programs that use vector derived data type
Create MPI programs that use structure derived data type
Demonstrate knowledge of parallel scalability
Descriptors:
Use mathematical formulas to determine speed-up and efficiency metrics for a parallel
algorithm.
Demonstrate the use of graphical systems such as MATLAB to display speed-up and
efficiency graphs
Demonstrate knowledge of parallel programming libraries and tools
Descriptors:
Demonstrate the use of performance tools for profiling programs (e.g., GNU GPROF or
MATLAB profiler)
Create parallel programs with calls to parallel libraries (e.g. BLAS, BLACS,
ScaLAPACK or FFTW)
Demonstrate the use of MPI tracing tools (e.g., VAMPIR) to determine parallel
performance bottlenecks

Minor Program in Computational Science Competency/Topic Overview Area 7: Scientific Visualization

Competency/Descriptors
Define SciVis needs; relationships to human visualization; basic techniques
Define Scientific Visualization (Sci Vis)
Discuss needs of SciVis (in the framework of a large variety of possible application
areas)
Survey different platforms for Visualization (e.g. AVS, VTK, OpenGL, VRLM)
Discuss the different techniques and visualization methods used in SciVis
Explain the human visualization system – capabilities and perceptions
Explain the different steps in the visualization pipeline
Discuss different sources of data for SciVis and explain the terms applied to data types
(i.e. scalar, vector, normal, tensor)
Discuss different types of grids (e.g., regular vs. irregular grids)
Discuss the different methods used to gather data
Describe and explore the use of different file formats for sharing data (netCDF, XML)
TIFE GIE JPEG Wavefront OBJ)
Discuss limitations of different methods
Discuss future applications in emerging fields
Metadata needs for graphics libraries
Overview of computer graphic concents
Descriptors.
Overview of SciVis concepts (pixels, rgh colors, 3D coordinate system, mapping 3D
data to a 2D screen continuous vs discrete)
Discuss polygonal representation
Discuss lighting/shading
Overview of classification/segmentation and transfer functions
Discuss concept of rendering pipeline (no details about matrices)
Discuss bardware rendering (mainly for polygonal models, few specialized volumetric
hardware cards)
Identify terms used in virtual space and in graphics elements
Navigate in virtual space and manipulate primitive objects
 Transform: scale rotate translate)
 Manipulate surface
 Manipulate lighting and camera
Explore colormaps and examine conceptual definitions for different color maps
(nertaining to color spaces HSV RGB etc.) as related to representing data and
relationships to percention
Describe approaches to visualization for different scientific problems
Descriptors.
Examine different computational solutions to scientific problems
Explain the different techniques used in visualization (i.e. glyphs, iso-contours)
streamlines image processing volume-data)
Examine the application of problems to visualization techniques
Utilize software tools to implement visual image of a solution
Discuss the use of time in animation
Utilize software to implement grid representations of data
Descriptors.

Identify the various cell representations (i.e. points, polygons, 3d geometries)
Discuss the application to different grid types (i.e. structured, unstructured, random)
Discuss raycasting methods and texture mapping
Examine the details of raycasting sampling (FAT(low resolution sampling),
interpolation techniques).
Examine algorithms: Direct Composite, SFP, use of transparency.
Identify the grid representation and data(color reps.) (regular grids, 1, 8, 24 and 32 bit
color information)
Discuss algorithms for manipulating images, distortion, fft's, enhancement, restoration,
frequency domains
Utilize software to implement different grid types
Discuss limitations of grids
Use visualization software to display an isosurface
Descriptors:
Discuss different data types used: scalar vs. vector data
Discuss the different grid types
Discuss the different algorithms (Marching Cubes etc.)
Introduce details of the system being used in a course (e.g., VTK, AVS, etc.)
Apply the system to extract and display an isosurface of some data set (could be tailored
towards the teacher's and student's interests/application areas)
Discuss limitations of these methods
Use visualization software to complete a volumetric rendering
Descriptors:
Discuss direct volumetric rendering (raycasting and texture mapping) and its
advantages/disadvantages vs. surface rendering
Discuss segmentation/classification and transfer functions
Discuss and illustrate how to use a system (VTK, AVS, etc.) to do volumetric rendering)
Using the system visualize a data set using raycasting
Using the system, visualize a data set using tayleasting
Discuss limitations of this method
Utilize visualization software to visualize a vector dataset
Descriptors:
Discuss vector data
Discuss different methods for vector visualizing (narticles stream ribbons vector
glyphs etc.)
Discuss the use of structured grid types: (ir)regular cylindrical spherical
Discuss application areas for vector visualization (air flow etc.)
Using a system (VTK AVS etc.) visualize a vector data set
Discuss limitations of this method
Explore examples of image processing
Descriptors.
Discuss hasic steps and goals in image processing
Discuss variety of data sources of images and how they can be represented
Discuss algorithms used for image processing
Explore examples of image processing (e.g. noise reduction image enhancement
feature extraction etc)
Discuss challenges and limitations in image processing
Use advanced techniques annied to a real problem
Ose auvaneeu reenniques appneu to a real problem Descriptors:
To be chosen by instructor based on instructor/student interest. Among suggested tories
To be chosen by instructor based on instructor/student interest. Among suggested topics

are:

- visualizing an irregular grid;
- visualizing a data set specific to the area of interest (see 3.2 and 3.3 for specific examples)
- writing a segmentation tool
- implementing a visualization algorithm from scratch (such as marching cubes or raycasting)

Examine SciVis problems for Biological Sciences – "OMICS" applications Descriptors:

Examine different problems existing in 'OMICS sciences that require visualization solution (overview)

Discuss challenges of representing biomedical/biological data (i.e., representing protein structure or genomic sequence with all their attributes as a visual metaphor)

Discuss challenges associated with visualization of scattered data such as text

information and bioinformatics data (e.g., phylogenetic information)

Gene finding in genomic sequences

- Examine different components of a gene structure
- Visualize genomic structure of an individual gene
- Build a comparison between genomic features from several genomes
 - Visualize (and examine) similarities and differences
 - Discuss goal-dependent options of parsing the results to be explored elsewhere (e.g., as plain text, XML-marked)

Protein folding and protein structure prediction

- Discuss the differences between protein folding and protein structure prediction
- Explore different methods used in protein folding and structure prediction
- Apply different methods of protein structure prediction and compare the results
- o Construct, visualize and examine structure-based protein alignment

Biological networks (e.g., protein-protein or protein-DNA interaction networks) Visualization of various types of expression data

- Discuss and contrast different types of expression data e.g., microarray gene expression data, protein expression data
- Discuss different visualization (and analyses) techniques used for expression data
- Apply (and compare outcomes) hierarchical clustering and k-means clustering to the same gene microarray expression data
- Discuss pros and cons of different clustering methods, their shortcomings, and ways to access the quality of clusters

Discuss potential applications of SciVis techniques in biomedical and drug design fields Utilize MATLAB to implement/solve the above problems

Explore SciVis techniques in BioMedical applications

Descriptors:

Explore a variety of biomedical applications of SciVis to explore large datasets such as MRI and confocal microscopy data

Overview of volume visualization techniques in biomedical problems

Examine and different ways MRI (Magnetic Resonance Imaging) data can be visualized (e.g., 2-D image versus isocontour slices).

Discuss potential applications (interpretation) of each of the techniques.

Utilize software tools (MATLAB, VTK) to apply the techniques above

Appendix B

Minor in Computational Science and Engineering

Primary Contacts: Bruce W. Weide (weide.1, 292-1517) and Steven Gordon (sgordon@osc.edu, 2-6082)

1. Fiscal Unit / Academic Organization

Department of Computer Science and Engineering (1435)

2. Administering College / Academic Group

College of Engineering / Department of Computer Science and Engineering (CSE)

3. Co-administering College / Academic Group

Not applicable

4. Semester Conversion Designation

c. Converted with minimal changes to program goals and/or curricular requirements

5. Program / Plan Name

Minor in Computational Science and Engineering

6. Type of Program

Undergraduate minor

7. Program Plan Code Abbreviation

TBD

8. Degree Title

Not applicable

9. Specializations / Sub-plans

Not applicable

10. Program Learning Goals

Not required at this time for minors

11. List of Semester Courses

See Attachment #1: Computational Science and Engineering Minor Proposed Program Requirements.

12. Program Rationale

The Computational Science and Engineering Minor was approved in Sp 2010. As the program has just commenced, minor changes are proposed along with those necessitated by converting course requirements to semesters.

The basic requirements of this minor program are guided by a document associated with the Ralph Regula School of Computational Science, which was established as a "virtual school" by the Ohio Board of Regents in December 2005. RRSCS is a run from the Ohio Supercomputer Center and does not offer degrees of its own but serves to organize and coordinate statewide efforts to integrate computational science programs into the curricula at participating institutions, one of which is OSU. Computational science and engineering is an interdisciplinary field with expertise scattered among different departments and different institutions—though OSU offers expertise and coursework in all these areas. The intention of RRSCS is to sponsor shared, inter-institutional programs that take advantage of the existing expertise, make it widely available, and limit the duplication of effort and expense where possible. For completeness, and to answer any questions that might

arise about this unusual aspect of this program, the full proposal for the just-approved minor program is provided as Attachment #4. The only change in the previously approved minor is to make the optimization course an elective rather than a requirement. This keeps the total credit hours upon conversion to semesters within the desired range.

13. Quarters Curriculum Advising Sheet

See Table 1: Current Advising Sheet, which shows the minor program proposal as previously approved as in the original document (Attachment #4) and presently serves as the Computational Science and Engineering Minor Advising Sheet.

14. Semesters Curriculum Advising Sheet

See Table 2 and Attachment #3: Proposed Advising Sheet.

15. Curricular Map

Not applicable

16. Associated Pre-Major or Area of Interest

Not applicable

17. Credit-Hour Changes

	Number of qtr-	Calculated	Number of sem-	Change in cr-
	cr-hrs in current	result for 2/3 of	cr-hrs required	hrs
	program	current qtr-cr-	for proposed	
		hrs	program	
Total minimum cr-hrs				
required for completion of				
program	22	14.7	18	+3.3
Required cr-hrs offered by				
the unit	4 - 19	2.7 - 12.7	3 - 13	-0.7 - +0.3
Required cr-hrs offered				
outside of the unit	3 - 18	3.0 - 15.0	3 - 16	+3.0 - +4.0
Required prerequisite cr-hrs				
not included above	15	10.0	10	0.0

18. Rationale for Significant Change in Credit Hours

While none of the cr-hr changes exceeds 4.0, a brief explanation is in order, particularly for the first line: minimum total cr-hrs. Simply because of the "breakage" in cr-hrs as OSU courses are converted to semesters in different units *in the best interest of majors in those units* (i.e., without regard to the impact on this interdisciplinary minor program), meeting the overall coverage requirements of the RRSCS curriculum entails an increase in the minimum from an equivalent of 14.7 sem-cr-hrs to 18 sem-cr-hrs. We view this as still a very reasonable minor that will remain accessible to interested students in the sciences and engineering.

19. Transition Policy

No student who begins the Computational Science and Engineering Minor under quarters will have progress toward completion impeded by the transition to semesters. Computational Science and Engineering Minor requirements beginning Summer 2012 will be those in force for students under

¹ Numbers in this column are computed by considering the OSU courses listed in Attachment #2 that would be needed to satisfy the current requirements in all competency areas of the minor coursework. The official overall minimum for the minor is listed as 20 cr-hrs rather than 22 cr-hrs, as some courses at other institutions might qualify as substitutes for these OSU courses.

semesters; but *every* quarter-credit-hour that would have counted toward a Computational Science and Engineering Minor under the quarter-based program will count (as 2/3 of a semester-credit-hour) toward the requirements for the semester version. If necessary, a revision of specific requirements will be worked out for any Computational Science and Engineering Minor student who is caught in the transition, in consultation with the CSE Associate Chair.

— Xiaodong Zhang, CSE Department Chair

20. Assessment Practices

Not applicable

Table 1: Requirements for Undergraduate Computational Science Minor					
Current Advising Sheet (Quarter Version)				
Торіс	Courses	Required/Elective			
Prerequisites					
Calculus	Math 151, 152, 153 (or				
	equivalent, e.g. Math 161,				
	162 or Math H190, H191)				
Core Courses					
Simulation and Modeling	One of: CEG 640, CSE	Required			
	778, ISE 521, 704, ME				
	785, MSE 533				
Programming and	One of: CSE 202, CSE	Required			
Algorithms	294P, CSE 221				
Numerical Methods	One of: AAE 581, CEG	Required			
	406, CSE 541, ECE 715,				
	Math 606, Math 607, ME				
	250				
Optimization	CEG 776, ECE 759, ISE	Required			
	522, ME 761, MSE 600				
Discipline Specific Course	es				
Capstone	CE 660, CSE 699 or	Required			
Research/Internship	H783,ME 564 or 565,				
Experience (3 credits	MSE 695 or other				
minimum)	approved individualized				
	research credits				
Discipline-specific	CSE 630, 655, 660, 670,	Required			
Computationally oriented	675, 680, Chem 644, MSE				
Course	756, Phys 780				
Elective: Choose at least	one course from the followi	ng			
Differential Equations	Math 255, Math 415,	Elective			
and Discrete Dynamical	Math 568, Math 571				
Systems					
Parallel Programming	CSE 621	Elective			
Scientific Visualization	CSE 694L	Elective			

	Торіс	Course	Credit Hours	Quarters offered	Required/ Elective	
D		MATH 1151.xx	5	Au, Wi, Sp		
Prerequisites	Calculus	MATH 1152.xx or Math 1172	5	Au, Wi, Sp		
		CEG 640	4	Au		
	Simulation and Modeling	ISE 7200	3	Au	Required	
		ISE 5100	3	Au, Sp		
	(one of courses)	ME 5372	3	Au		
		MATSCEN 4321	3	Au		
	Programming and Algorithms	CSE 1222	3	Au, Sp		
		CSE 1221	2	Au, Sp	Required	
Core Courses	CSE 2221	4	Au, Sp, Su			
		AERO 2581	N/A	N/A		
		CEG (CIVILEN) 2090	1	Au, Sp		
		CSE 5361	3	Au, Sp		
	Numerical Methods (One of Courses)	ECE 5510	3	Au	Required	
	(one of courses)	MATH 3607	3	Sp		
					-	
		MECHENG 2850	3	Au, Sp		
		CIVILEN 4000.01	2	Au, Sp	Required	
	Capstone Research/Internship Experience (minimum 3 credits)	CSE 4998, or MECHENG 4901.01, or 4902.01, or other approved individualized research credits	3-5	Au, Sp, May, Su, May + Su/ Au, Sp/Au, Sp		
		CSE 3521	3	Au, Sp		
		CSE 3341	3	Au, Sp	Required	
Discipline Specific		CSE 3431	N/A	TBD		
Courses		CSE 3241	3	Au, Sp		
	Discipline-specific	CSE 2331	3	Au, Sp, Su		
	Computationally offended Course	CSE 5331	3	Au, Wi, Sp		
		CHEM 644	3	Au		
		NATSEN 6766	N/A	N/A		
		PHYS 780	N/A	N/A		
		MATH 2255	3	Su, Au, Wi, Sp		
	Differential Equation and Discrete	MATH 2415	3	Su, Au, Wi, Sp	Elective	
	Dynamical Course	MATH 2568	3	Su, Au, Wi, Sp		
elective: Choose at least one course from the	Parallel Programming	CSE 5441	3	Au	Elective	
following (3 credits total	Scientific Visualization	CSE 5544	1-5	Su, Au, Wi, Sp	Elective	
required)		CEG (CIVILEN) 4760	3	Sp	- Elective	
		ECE 5759	3	Au		
	Optimization	ISE 3200	3	Au, Sp		
		MATSCEN 4181	3	Au	1	
		Total minimum credit hou	rs: 18			

Table 2: Requirements for Undergraduate Computational Science Minor (Semester Version)

Minor Program Form College of Arts and Sciences

Student ID Number	Name .#	
Minor Computational Science		
This form should be submitted to your college or scho	ol office.	
College/School of enrollment	Major	
Expected date of graduation		
Have you filed a degree application in your college off	ice? Yes 🗆 No 🗆]
 The minor in computational science consissimulation and modeling course (MATH 1157, 4321), either CSE 1221 or 2221, a numerical MATH 3401, AERO 3581, MATH 5401, or ME approved departmental research course desig modeling course (CHEM 5440, MICROBIO 5 PHYS 6810, LING 5801, LING 5802, ECON 4 PSYCH 5609, PSYCH 5618, or EARTHSC 56 MATH 2568, CSE 5441, CSE 5544, CEG 476 Minimum C- for a course to be listed on th Of these courses, at least 12 credit hours r Minimum 2.00 cumulative point-hour ratio 	ts of a minimum of 18 crea CSE 2021, ISE 5100, ME methods course (CSE 536 2850), a capstone researc ination, one discipline spe- 161H, CSE 3521, CSE 33 050, ECON 5001, GEOG 42) and one elective (MAT 0, ECE5759, ISE 3200, or e minor. nust be at the 2000 level of required for the minor. GE courses	dit hours of course work: A 5372, or MATSCEN 1, ECE 5510, MATH 3607, ch or internship using an cific computational 41, BMI 5730, MATH 5651, 5221, PSYCH 5608, TH 2255, MATH 2415, MATSCEN 4181). or above.
Course	Hours	Final Grade
	 Revision	
Total Hours Original	 Revision	